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THE STRESS CRITERION 0)? A TENSION MEMBER WITH

GRADED I’LEXURAL STIFFNESS*

(Contribution to the Problem of”’’Clamping Effectl’ Outside
,.. of the Elastic Range)

By Hans IT. Kaul

SUMMARY

The approximate size of the stress criterion of a bar
on two supports stressed beyond the elastic range is as-
sessed bY an approximation. The calculation proceeds from
the premise of “substitute flexural stiffness” so defined
that the part stressed beyond the elastiic range may be
considered as following Hooke!s law when determining the
flexural deformation quantities. F.o r the determination
of the substitute flexural stiffness, it is presumed that
the material is already stressed so much beyond the yield
point as to be strain-hardened. The data are directly ap-
plicable to materials having no definite yield point. For
the rest, von Karmanl s method for compressed and subse-
quently deflected bars serves as basis for the calculation.

The action of bars on reaching the yield point is not
discussed; it is to form the subject of a speciai report.

As regards the magnitude of the stress criterion of
tension bars outside of the elastic range within the stress
region - yield point and ultimate stress, wherein the sub-
stitute flexural stiffness is quite small and finally ap-
proaches zero, the following may be stated: If the whole
bar is stressed beyond the elastic range, the stress cri-
terion itself is very small and approaches zero near the
ultimate load.
---------------------------------------------------------

*llDie Spannziffer eines Zugstabes mit abgestufter Biege-
steifigkeit. (Ein 13eitrag zur Frage der ‘Einspann-
wirkung’ im ausserelastischen Bereich,.)” Luftfahrt-
forschung, vol. 133 no~, 6, June 20, 1936, pp. 181-189.
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If an elastic margin, remains near the point o? moment
application (nodal point) , such as may happen through
thickening of the part when some other welds adjoin, the
stress criterion is considerably higher and remains of,fi-
nite magnitude even near the ultimate load. The amount of
increase depends upon the” length of the elastic margin.

Neither the total length of the bar nor the length of
the part stressed beyond the elastic range has- any appre-
ciable effect (for example, the heated zones in welds), so
far as it does not pertain to very small lengths which are
of minor practical importance.

The effect of the kind of support at the opposite end
of the bar from the joint itself is considered only when
the length of the part stressed beyond the elastic range is
very small. The final results are:

The elastic margin has infinitely great flexural
stiffness;

The part stressed beyond the elastic range has in-
finitely great length.

I. INTROi)UCTION

Supplementing a previous report (reference 1), the
present consideration based on theory only is extended to
the approximate magnitude of the stress criterion for a
bar on two supports stressed beyond the proport.ionality
limit.

In particular, the case is explored where the bar, :ua-
der constant axial load throughout its length, is stressed
only over part of i.t beyond the elastic range.

Such a case occurs in welded structures when material
concentration in the joints results in cross sections
greater than in the free length of the member; and again,
when in the ileated zones around a welded joint, the yield
limit and the proportionality limit are locally much red-
uced (reference 2).

The calculation of the stress criterion is reduced to
an equivalent elastic mei~ber (i.e. , following Hooke!s law),
a “substitute bending stiffness” for a section length
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stressed beyond the yield limit being so defined as to per-
mit its insertion in the solution of the differential equa-
tion for an elastic member of identical length and support
conditions. For the calculation of the substitute bending
stiffness it is, moreover, assumed that the member is al-
ready stressed so much beyond the yield point as to have
become strain-hardened again. The conditions at the yield
point itselfare reserved for a future report.

As regards approximate size in particular, it is at-
tempted to establish how the stress criterion at the end
of a member with two supports changes with the length of
the part stressed beyond the elastic range and with its lo-
cation in the member.

11. THE STRESS CRITERION OF AN ELASTIC TENSION MEMBER ON

TWO SUPPORTS WITH GRADED BENDING STIIU?NESS

AITD CONSTANT AXIAL LOAD

A+ General

From the approximate differential equation for the
elastic line of a bar stressed in tension and bending

d2y
M( x) - s y=- I? J :--~

Y is deflection

s, stress in member (assumed constant throughout its
length)

“M(x), total moment of external loads and individual
moments at portion separated at x, relative to
the section at x of the assumedly nondeformed
member , it is possible to compute (reference .3)
the stress criterion

Mi is the individual outside bending moment at point
i

— ..—.—— . . ... . . ... .. ,-,.,,,,, ,,, -. ,, ....-........... . . . ,.. ,,, ,,, ,,.
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vi, tor,sion of section at point ‘i due to Mi, at
any point i of the member un,(ierany limiting
conditions.

B. Stress Criterion of an Elastic Bar Pin-Jointed at

Both Ends on Two SupForts with Two and Three Sections of

Varying Flexural Stiffness

I 1 11111 II 1111

1 Bars with two sections having unlike flexural—%——_——______—_ _________________ _____ ________.___,_
stiffness. - Figure 1 shows a bar pin-jointed at both ends—————————
supported at two points, O and 2, and stressed under con-
stailt axial load S and witil a flexural end moment Mo;

its flexural stiffness along panel O to 1 is constantly
equal to E Jl, and along panel 1 to 2, constantly equal”
to EJZ.

)

ki v~
Ui = ;– tanh cti and Vik = .——————————__—_

cosh2 ~i(ui+uk)

and observance of the limiting conditions at the supports
O and 2 and of the sta%ility conditions at point 1, the
stress criterion at support O follows from the approximate
differential equation for the elastic line in panels O to
2 at:

mo.2_ Ssul— .—————————————
1- iJl - V1.,2

(1)

Table of formulas 1 gives the limiting values ap-
proached by mo.2 when one or more of 51 , S2, EJI, EJ2

become zero or infinitely great. With SI = O or Sa = O

the value of the stress criterion of a pin elastic bar on
two supports with constant flexural stiffness is o%tained,
w“nile SI = ~ affords the corresponding limit value of
the bar with constant flexural stiffness for s=w.
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Table of formulas 1. - Several limiting values of———————————————————
corresponding to fqrmu.la (1) for extreme values of

5

–, ~o.2

the quantities Sl, Sa, EJl, EJ2.
.————-

S2

————.-————————————————————
mO.2

—————

No s

—————

1

-————.

EJl
-——.-——

EJ1

EJ2S1

s s.
o EJ2s

a2————.— . 1
tanh a2

-—————

EJl

————_————_——_——_——_—____
Ss

2 0 EJ2s —————————--
al

——————— - 1
tanh al

-—————

EJl

-.——————

JS E J,3
—————

4

EJ2cm S2
.————. -.———————————————————————.————————

Ssul
EJ1S1 ——-.———————.- —--—————————

1-
1————— .-——— ——— ——— ——

2
?
U1

cosh al ––– + 1)
\ lc2 /

———--—

5

6

——_.-——— —————————————————————————

EJI
-—————

w
-——— —.-

S1
-——----

w 0
————————————————————————.-

EJa
————— ...—

S1
_—_____

cm
——————————————--———.- ——————

S1
ss——

S2
7

——— --—
8

—————

0S2 w

.- —..-——-

S1
-————.-

m
———————————_————————_—__—

o s S1cm

2 Member with three sections of different flexural—x— ——_______ ____.________________________________—__—
stiffness (fig. 2). - The following abbreviation is intro-—————————
duced:

U2
————— --——— ——— ——— ——— ——— ——— ——— ——— ——— ——=W*3

[

Uu
CO sh2 (X1 U1. + U2 - –––––L––3–––––

c6sh2 CL2(U2+U3)1
As in

the stress
the -precediilg paragraph, we obtain for point O
criterion:
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mo.3 = Ssul.—. — ——————- (2)
1 - u~ - I’V103,

Table of formulas 2 contains the limiting values ap-
proached by m when one or more of S1 , s~ , s3, EJ1 , EJa ,

EJ3 become zero or infinitely great. With s% =0, S2 =

0,.or S3=0, we obtain the stress criterion for an

identically supported and loaded ba~ with two sections of
different flexural stiffness, and with S2 = m the corre-

sponding limiting value of section 1.

The limiting values of tabulations 1 and 2 are sub-
sequently employed in the calculation of the stress crite-
rion of welded steel tube trusses, where the practical im-
portance of individual cases is discussed in detail. Tor
the present it suffices to state that the flexural stiff-
ness of parts of the length (heat zones) stressed beyond
the elastic range is so small compared to the elastically
constant parts that, particularly vicinal to breaking
stress, the elastically constant sections may %e ascribed
the term “infinite” flexural stiffness, and those stressed
beyond the elastic range, the term “zero” flexural stiff-
ness.

111. ROUGH CALCULATION 01’ STRIISS CRITERION I?OR

THE CASE 0?? ONE SECTION OF THE B.4R BEING STRETCHED

A. Method of Calculation

Flexural deformations of members in compression be-
yond the elastic range have been usually described in lit-
erature by giving “substitute flexural stiffness” EJsl,,;l

a suitable definition so as to permit its direct insertion
in the differential equation of an elastic bar (i.e. , fol-
lowing Hooke~s law) of the same length and the same sup-
-port conditions. So the calculation of a bar stressed
beyond the elastic range reduces to the case of an “equiv-
alent elastic bar.” With this procedure the zone at the
yield point was generally disregarded altogether or else
bridged over by interpolation. This range is theoretical-
ly and experimentally treated for bars stressed in combined
tension and bending in a report to be published very soon.
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The present fundamental investigation also disregards
the. range on the yield point OF in relation to the ap-

proximate magnitude of the stress criterion; the llsubsti-
tute flexural stiffnessll of the lleq~~ivalent elastic barn
is computed for the case of simultaneous occurrence of
very great tension and small flexural stresses under the
assumption that” the flexural {lnd moment U. is applied

only at a tensile stress am = ~> UF, at which the mate-

rial of the portion stressed beyond the elastic range has
already bec~me strain-hardened. For materials on which no
yield point is discernible, the following considerations
are, of course, summarily applicable.

B, The Substitute FlexUral Stiffness

(v. Kdrm~n’ s method (reference 4))

Following a suggestion by Engesser, v. Kdrm.dn deter-
mines the substitute flexural stiffness of a bar com-
pressed a~d then deflected beyond the elastic range on the
following premises.

1. Uilder minor flexure of a straight bar the elon-
gations of the individual fiber correspond
even beyond the elasticity limit to the same
stresses nroduced by these elongations under
pure comp~essiono

29 On deflection flat sections shall remain flat.

On these premises, v. KArm6n computes a “resultant
deflection modulus” which, multiplied by the particular
equatorial moment of inertia of the cross-sectional area
relative to its gravity axis, gives the substitute flexur-
al stiffness for a definite main axis plane , and to which
the following relation is applicable:*

J1 J2
cres = ~ Ctotal + ~– celastiC (3)

Applying v. K&rm&nls definitions for bars compressed
beyond the elastic range to bars stressed in tension be-
yond the yield point, the notations”in equation (3) desig-
nate:
—————— ____________ _____ _________________ __________
*von K~rm~n denotes the resultant modulus Cres with M.

I—, .. .. .-.——.—-,,--.— -—— ...- ---- .... ————- ...—
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‘“ctotal = d~~~tal
——-—.-—- is the modulus of the total form changes,

. .
defined hy the slope of the tangent.
placed on the stress-strain curve
0’ f(~total) at point (am; cm) ; am
is the pure tensile strain S/l? on
which the flexural stresses are super-
posed; cm is the elongation relative

to am in the tension test.

do
Cela,stic = d~elastic———.-————— is the modulus of the elastic defor-

mations, defined hy the slope of that
tangent on the return curve of the hys-
teresis loop in a tensile test with a
stress am as peak of the loop which
touches the return curve at the peak
(point ~m; ‘m).

J is the moment of inertia of the %ar section with re-
spect to its axis of gravity.

J~ , the moment of inertia of the section part lying on the
tension side of the flexural stresses relative to the
“neutral” axis , which is defined as that straight line
lying in the section along which the additional stress-
es from the flexure are zero.

J~ , the corresponding moment of inertia of the section
part lying on the compression side of the flexural
stresses.

The substitute flexural stiffness (EJsub) is equal

to the product of resultant deformation modulus and iner-
tia moment J

(EJ)su~ = Cres J = J1 Ctotal + J2 Celastic (4)

The position of the neutral axial is defined by:

s–1 Ctotal = Sa Celastic (5)

wherein ~1 and ~a are the static moments corresponding
to the inertia momen,ts Jl and: J2 .



Table of fomulas 2. - Several limitingvalues of m0=3 correspondir,gto formula (2)—..--—.—— —
for ex~remevalues of the quantities S1, s2, S3, EJI, IJ2, EJ3.———.

+

no. S1 ~ s~~s3\EJll~2\EJ3
mo.3

1

2

3

4

5

7

8

——

9

10
—.

11

1

1’ SSU2.
o S2 S3 EJ1 EJ2 [ EJ3 ~_u

2 -’? 2.3

EJ~ ‘ EJ2
Ssul

S1 “o S3 EJ3
1 -U1 -VI-3

o EJl EJ2 EJ3
s s u~

S1 $2 l-~. -vl.2

S3 I EJ1 EJ2 EJ3 mm s~

ssu~
S1 m S3 EJl EJ2 EJ3

1-

cosh’ U’?* “)
Ssul

S1 S2 ~ EJI EJ2 EJ3 s U&?
1-

[

s u,
cosh2 al s U1 + s U2 -

cosh2 CL2
r )1$+1

3_ .—.
S1 S2 w EJ1 ‘o ‘--EJ3 ssu~

s s~
S1 S2 w m EJ2 EJs

1-
S U2

S1 k3

i sl+su2-
cosh2 a2(s TJ2+ ~)

s s~
S1 S2 CD CD EJ2 ~ ,

1-
S up

S1
s~ + s U2 -

cosh2 aa

S1 S2 o? OJ o w s sl

Sssl
S1 S2 S3 m o m s - S1

ul

.
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A precise determination of the form changes, especial-
ly following bending moments of finite magnitude, requires
several generalizations relative to v. Kirmdnl s calcula-
tion method; in particular,
(reference 5) ,

it should, as shown by W. Rein
include the previous history of the ex-

plored piece. But as these refinements afford onl”y minor
improvements while making the calculation more protracted,
they are disregarded in the present report.

C. Approximate Magnitude of the Substitute I’lexural

Stiffness for a Certain Material

In order to get an idea of the approximate size of
the substitute flexural stiffness still to be expected
from bars stressed in tension beyond. the yield point, the
Appendix of this paper contains the substitute flexural
stiffness of bars fabricated from a certain carbon steel
and in -particular-, of circular sections frequently used in
airplane design as welded structures. The Appendix also
contains detailed data regarding the particular material
and its stress-strain curve in prestretched condition dur-
ing drawing and in the annealed state during welding. It
further is shown that in the annealed zones on welds of
the chosen steel, the breaking strain is reached at ten-
sile stresses at w’nich the blank-drawn material (i.e. ,
that considerably. stretched during drawing) still reveals
no. appreciable discrepancy frovHooke’s law, In the in-
vestigation of the deformations of welds from the particu-
lar carbon steel, which, ir.eluded both blank-dramn and an-
nealed pieces, the blank-drawn parts of the bars nay still
be assumed elastic when the annealed parts are already
under tension beyond the elastic range.

The deformation moduli established from tension tests
have the following values:

1. Blank-drawn tubing -
(Mean value for elastic range approximately up to
ultimate stress of annealed material):

Celastic = cto~a~ = E = 1.85 x 106 kg/cln2

2, Annealed tubing -
Elastic range (mean value, valid approximately
up to yield point):

Celastic
= Ctotal = E = 1.97 X 106 kg/cm2
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TABLE III. Outside of Elastic Range
,_ (afte_r s>ra~n-hardening at m ~ 3,000 kg/cm2)-.,.
——————————_ —————-.—————.————— --———.-———-..—————— ———

u

1 I

10-6 Ctotal 10--6 celastic
kg/ cma kg/ cm2 kg/cm2

————————_—— __———____—_——_—_— ———————————————
3,000 0.0180 1.65
3,350 .0114 1.65
3, 670 .0027 1.40

..——— ——— ——— ——____—_—_————.—— _——— ——— —_ ——— ——— ——

This affords for steel tubes of 20/1 and 30/0.5
diameter/wall thickness ratio the comparative EJsub/EJ

values in the elastic range of table IV. The last column
gives the EJsub/EJ values for full rectangular sections
in comparison. The effect of the cross-section form is
seen to le relatively small. (v. K&rm6n and others obtain
the same result by comparing full rectangular and I sec-
tion.)

TABLE IV
-,------+-------------------____---__---T-------------------

IIean I EJsub Deformation moduli
tensile ~J

——.——— for follol:ing cross- (kg/cm2)
stress sectional forms

I–—–___–__—–_-–––.-––.-T__––_________ ––––––––– ––––––––

m Xing

t

Complete———______ ___________
D/6=20/l ~D/5=30/o.5 rectangle

I c:::icl::~:l

–––_.–_.-_–_______l_l_..,_________.L_______––-–+_––––––-–+––––––––––

D. The Stress Criterion of a Straight Round Tube on

Two Supports with Varying Length and Location

of the Part Stressed beyond the Yield Point

1 ~jethod of ~alculation. -as———_—.————_.——_—_.—.___..——— The part stressed beyond
the elastic range is.given a substitute flexural stiffness
EJsub.

Proceeding from the bar with two segments of unlike
flexural stiffness, it is attempted to ascertain the change
in stress criterion for different length conditions of the
two segments - once when the segment lying closest to the
joint is stressed within, and then when stressed beyond
the elastic range.

.

.-
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The premise is that the lending .moment “.M is applied
only at the pertinent tensile stress 0’ms so that the pre-

vious history of the piece need not be considered.

2. Bar~in-~ointed at both ends on two su~orts with—————— ——— —————————————————— .—.———— ..—. ——.-———..——
two se~ments of unlike flexural stiffness (fi&. 3) . - The—————— —.——--——.———.—-...——.-——-_.———.——.-——.—.——...—— ———— ———
test specimen was a round tube D~6 = 20,71, 17’ cm long.
The results obtained herewith are equally of general im-
portance for.other lengths.

Figure 4 gives the stress criterion ~o.2 according
to formula (1) for various lengths sl versus the mean

tensile stress am = s/F. Even a small elastic margin SI
at the joint results, asis seen, in a substantial rise in
stress criterion. (Compare the curve for S1 = 1 cm with

that for ~1 = 0.) On approaching the ultimate load, that

is, in the case am = afailure i.e., EJ2 = EJsub = O,

=0 also gives mo.2 = o
S1 9 whereas finite values S1

themselves are supplemented by finite values of the stress
criterion mo.2 * wfi.ic’hincrease in greater proportion as
leilgth S1 increases. This is shown in figure 5, where
mo.2 is plotted against sl for various EJ2.

This fact is essential for the type of dependence of
clamping factor on the stress criterion, for it was proved
in another report (ieference 1) that the clamping factor

~~rit : SE, that is, the ratio of buckling load ~crit

of a two-bar group consisting of tension and compression

member to “natural” buckling load SE = ~:fir
=Z– of the com-

pression street, increases at first very steeply with in-
creasing stress criterion. m of the tension member from
1.0 for m=O and then asymptotically approaches the
limiting values 2.045 for m = ~ (rigid restraint) . The
range of small m with its steep rise in clamping factor
being important from the practical standpoint, a small
elastic margin S1 in a b.ar”stressed in tension beyond
the elastic range can raise the clamping factor, i.e. , the
buckling load of a group of lars near the point of re-
straint, quite materially.

An example of such a margin SI on a welded joiilt
is given in figure 6. The “~resence of welded angles or
stirrups in two mutually pe’~pendicular planes may afford
elastic margins of greater length S1 .
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The segment SI closest to the joint Id stressed be-
yond the elastic range,
not (fig-. 7).

while the other segment S2 is..

Figure 8 gives the stress criterion mO..2 versus the
mean tensile stress Om = S/l? for various lengths S1 of

the segment stressed beyond the elastic range. On in-
creasing the length of S1 the curves quickly approach
the lower limiting curve for S1 = s, S2 = O (the whole

bar stressed beyond elastic range). In our case the curves
for sl = 3cm=l.5D and. for SI = s already differ on-

ly little, i.e., the hot zones developed in gas fusion
welding are themselves often sufficient to cause the stress
criterion to drop almost to the lowest possible limiting
value (fig. 11).

3. 3ars having three segments of different flexural————— .-————_— —..————.._— —..————.———————...—————————.-———
stiffness. - The examples here apply to cases where the———..—..——...
segment of length S1 closest to the joint is stressed

elastically, the next one S2 stressed beyond the elastic

range (heated zone) , and the one next to the other support
(s3)! is again stressed elastically (fig., 9).

In figure 10 the stress criterion mO.3 is plotted
against the mean tensile stress Om = S/F for SI = con-
stant = 1 cm, s = constant = 17 cm, D/8 = 20/1 and dif-

ferent values of S2 . The case is like that treated last
in the preceding section; even figure 10 is fundamentally
like figure 8 - that is, by existence of an elastic margin
of given length sl at the joint, a length increase of
the next following segment stressed beyond elastic range by

> 1.5 D) has practically no ef-a certain amount (here S2 s

feet on the stress criterion. This is particularly evi-
dent in figure 11, where the stress criterion mO.3 is

shown against length S2 for different values dm.

Flotting the stress criterion for constant values
S2 = constant and s = constant against urn with S1 as

parameter, results in a set of curves which fundamentally
is similar to that in figure 4; that is, even in a bar
conformable? to figure 9, an elastic margin affects the
stress criterion at the joint approximately as its length.

4. Effect of t~e of su~ort at the end of the bar”—————————————— —— ---—— ——-.——.———————.-—————————————
o~osite to the ~oint of a-plied rnbment ““-This effect is———————————--— _____.-.___ _______ _____ “
given only a cursory treatment in the preceding example of
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a bar with three sections of constant flexural stiffness.
In the extreme case EJI = EJ3 = m, EJ2 = O which, as

regards approximate size, corresponds to the case where
sections S1 and S3 are stressed elastically, and see-

tion Sa is stressed beyond the elastic range, we have in
the case of hinged end support on both sides:

m= ---------~ (table of formulas 2)

If section S3 ‘is rigidly restrained in end point 3,
it is in the present case equivalent to a shortening of
the bar by an amount S3 (table of formulas 2, fig. 11,

and table of formulas 1, fig. 7), so that:

s (sl + 52) s~
m = -———.——.-———————

S2

Table V gives for a load S = 2,000 kg, an elastic
margin at the point of moment application SI = 1 cm and

different bar lengths s the values mo.3 for hinged and

clamped support of bar end 3. In loth cases the values
approach each other quickly as S2 increases.

TABLE V. S= 2000 kg, SI = 1 cm, EJ1 = EJ3 = m, EJ2 = O
——

S2

m
——
1
2
3
4
5
6
7

——

-——————————————————.————.-

Rigid restraint at end 3
s = 17 cm and s = 47 cm

or s=~
-——————————————.————————.

4,000
3,000
2,660
2,500
2,400
2, 340
2,250

-——.——-.——————————————————-

-.___———_——_—————_______— ..—.————

.Iiingeds———.————-
S=17

-————————

‘i

12,125
I.—————--——

~pport at end point 3
~m

1--
s= 47 cm s = co

2,040 2,000

This table further reveals the effect of total bar
length s on the size of m to be small and even zero in
special, extreme cases; consequently, the data obtained
previously with a bar of 17 cm total length is of general
validity for any length.
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5. Simple ~~roximate calculation of the stress cri-——— ——— ——— ——— ——— ——— —.——— —. ——— ——— ——— ——— ——
terion of bars stressed in tension b~ond the elastic-———_— —-——— ——— ——— ——— ——--———— —__ ..—..——— — ——————————————
rang~. - This affords the possibility for a very simple———
approximate calculation of the stress criterion of bars
stressed beyond the elastic range, which have an elastic
margin at the point of applied moment (such as the joint
on a framework) . The m values are generally sufficient-
ly exact when the calculation bases on a bar hinged at
%oth ends and having two sections of different flexural
stiffness - the elastic part having length sl and flex-

ural stiffness EJI = m-; the other, length S2 = m a,nd

flexural stiffness EJ2 = (EJ) sub. Then the stress crite-

rion is (table of formulas 1, No. 6)

m0”2=S (sl +%)

Tigures 12a to 12d give the stress criterion mO-2
of the elastic margin versus the substitute flexural stiff-
ness of the’ bar section stressed beyond the elastic range
for divers lengths S1 . The tension S forms the parame-

ter. Thus it is possible to obtain the stress criterion
direct or else by interpolation for a given group of val-
ues Sl,s and EJ2 = EJsub.

IV. AFFPJfDIX

CALCULATION OF THE SUBSTITUTE PLEXURAL STIl?l?NESS Ol?

ROUND TUBES WITH I?UHERICAL EXAMFLES FOR TUBES

OF CERTAIIT CARI?ON S~EEL

A. Calculation of the Substitute Flexural Stiffness

for the Circular Section

Here it is ;;ecessary to distinguish between the two
cases that the neutral axis intersects the median line of
the ring perpendicular to it:

1) between the center of the ring and the inner wall
of the tutie, that is (R - a) > 8 (see fig. 13) ,
or

2) within the tube walls, so that (R - a) S 8. (See
fig. 14.)
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In the first case (EJ) ~~b -is readily approximated

(see reference 2) , while the second “case requires an exac’t
calculation.

TO 1) (R - a) > 8 (fig. 13)

In this case the assumption of a part of the cross-
sectional area equal to the product of the length of the
relative arc of the wall center line and the wall thick-
ness affords a close approximation. Resorting to Recht-

lichls notation rm = ~–~–~ and n = —a—, the calculation
s

rm
Jlof the comparative factors =1

s
and –.–.–

J2
gives:

—.2

d
-—..————

s n2 + n (n arc cos n)—1– 1 - -
s

~1 - n’
-———_—

—2 - n arc cos n

JI (TT- arc cos n) (1 + 2n2) + 3n~- n2
————————..————.——————————————. -——————————

i2– =
—————

arc cos n (1 - 2n2) - 3nfi- n’

These two ratios are thus shown to become independent
of the wall thickness & and to be solely dependent upon
n. Now the substitute flexural stiffness EJ for asub
certain mean tensile stress am can be determined as fol-

SCelastiC = =L
low’s: form the ratio _--—_———— for the particular

Ctotal Z2

Om ; read from RecF.tlich’ s curve 2J = f(n) the corre-
g2 -

spending value n = –a—,
J1

which applied to the curve
JI ‘m

7’– =

then gives -=2–.l?(n) Now all needed data for a given

tube (rm, I?, i, J) are known and (XJ) sub can %e o%tained

because equation (3) may be transformed by means of the re-
lation:

Jl+J2=J+7a2

to
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and which gives

(TJ-)~ub = Cres”; :

To 2) (R- a) ~ & (fig. 14).

First determine from

s
—1 Ctotal = ‘2 celastic

the-position of the neutral axis by defining’ a and CPO
(fig. 14).

For % the equation which is solvable”with the aid
of figure 15, reads as follows:

2sin
CPo..—
2

tan CPo--— =
2

31-r——
2

[&_#J--
( e’”—————.———- 1

Cto tal )

which then gives

( CPo
C= R 1 - COS y–

)

aild a=R-c

NOW when computing (EJ) sub, it is expedient to in-

troduce an Ilideal cross section” so that the calculation
can be made with a straight stress distribution (constant
deformation modulus Celastic) . The width 2f of each
fiber (fig. 14) is shortened in the ratio Ctotal——————— leav-

Celastic’
ing thus a cross section with a
J

“substitute inertia mome-nt”

sub relative” to the neutral axis for \ihich:

( Ctotal ‘J
~4

———_____
sub = 1 - Celastic )[ (-s ‘o - i ‘in 2@

1
- ~~-: (T. - sin cpo)

1

Ct+ __Qt al——.—_—
Celastic [

; (R4 - r’.) + n a2 (R2 - ra)1
and finally

(EJ)~ub = Celastic JSU%
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3. Numerical Examples of the Substitute I?lexural

Stiffness for a Certain Steel

Preparatory to the tension-bending tests beyond the
elastic range, the deformation raoduli ‘total and Celastic
of the test material had been established by the Materials
3ranch of the DVL.

The material consisted of commercial blank-drawn
i88hler steel tubing, having a breaking strength of from 40
to 50 kg/mm2 in the blank-drawn state. The stress-strain
curves had been determined on both plain and annealed spec-
imens. The results of the annealed samples reveal the be-
havior of the metal in the heated zones of welds.

Figure 16 illustrates the total elongation Ctotal
versus the tension a for two blank-drawn sample tubes.
The yield point and breaking limit of the annealed sam-
ples, which are shown also , disclose the blank-drawn tube
to still approximately follow Hookels la;? at a load corre-
sponding to the breaking stress in the annealed tubes.
Thus the investigation of the deformations on welds of the
particular metal including both plain and annealed s-peci-
mens may be made on the -premise that the blank-drawn (plain)
parts of the bars are stressed within the elastic range.
The deformation moduli quoted in a preceding section were
obtained from the test data. As will be seen in table III,
the modulus of the total form change Ctotal in the range

beyond the elastic limit is less than 1/100 of modulus E
within the elastic limit after strain-hardening. The mod-
ulus of the elastic form change Celastic is, above the

yield point, still a little less than modulus E (reference
1) , although it remains of the approximate size of E.
The values for ‘elastic correspond to the slope of the

tangents at the peak of the hysteresis loop (corn-parethe
-*- tangents in fig. 17); that is, they are maximum val-
ues with very littie stress decrease. At great values of
stress decrease Celastic decreases along the return

curve of the hysteresis loop as much as - 25 percent (for
stress decrease to zero).

Numerical values of the substitute flexural stiff-

n e!?s-r5rJ;@:______________
———— ...————.-————.-——————————————

– The calculation of EJsub for circular

sections is made as stated in the previous section. Table
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EJ sub
IV gives the values _.5_.— f~~ D/& = 20/1 and D/b =

30/0. 5 for three different mean tensile stresses cim.
Incident to the examples for round tules in table IV, it
is to be noted that the distance R - a of the neutral
fiber from the compressive edge fiber (fig. 14) will be
less than the wall thickness for the particular form-
change moduli.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure l.= Bar on two hinged supports with two parts

having unlike flexural stiffness.
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Figure 2.- Bar on two hinged supports with three parts
having different flexural stiffness.
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Figure 3.- Bar on two hinged supports with two parts
having different flexnral stiffness, one

part being stressed beyond the elastic range.
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Figure 4.- Stress criterion m versus mean tension urnfor different
lengths s,of elastic margin at the joint (for ultimate stress
~r= 3720kg/cm it is EJ2=0.
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Figure 5.-d m versus leqgth s,of elastic margin for

different substitute flexu.ralstiffness EJ2
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Figure 6.- Formation of an elastic margin s,in welded joints.
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Figure 8.- Stress criteriun m versus urnfor different length
the part stressed beyond the elastic range at the joint.
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Figure 9.- Bar on two hinged supports with thee sections @f
different flexural stiffness,thecenter section
being stressed beyond the elastic range.
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Figure 11.- m versus S2 corresponding to figure 9 for different EJ2.
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Figure 12(a-d).- m versus EJg for different axial loads S with validity

different
of approxi~tion formula m.=-S(sl-k2) for four

lengths of elastic margin S1.
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Figure 13.- Location of neutral axis in section for tension beyond
elastic range superposed by bending (R-a>6,)
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Figure 14.-
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I,ocationof neutral axis in section for tension beyond
elastic range superposed by bending. (R-a<~.)
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Figure 15.- Curves for defining Vo.
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